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ABSTRACT ‘2
This report describes a numerical procedure for solving a two-
dimensional, unsteady flow problem. The fluid is in a tank, has a free
surface, a periodic source (to be terminated) on the side of the tank, and
is subject to a near zero gravitational field. The flow is assumed to be

incompressible and irrotational so that the problem reduces to a boundary

value problem governed by the Laplace equation. Wl‘“
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LIST OF SYMBOLS

Mesh size, ft

Depth of slot, ft

Fraction of mesh size

Effective gravity, ft/sec’

Liquid height in static equilibrium, ft
Average liquid height under static equilibrium condition, ft
Surface tension, 1bf/ft

Time, sec

x-component velocity, ft/sec

Source velocity, ft/sec

y-component velocity, ft/sec

Width of the tank, ft

x-coordinate

y-coordinate

Difference

Perturbation of liquid height, ft
Contact angle, degree

Density, slug/ft3

Velocity potential, ft?/sec

Relaxation factor
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LIST OF SYMBOLS (Continued)

Superscripts
k Number of iterations
s Point on the free surface

Subscrigts

i Index for x-coordinate
j Index for y-coordinate
n Index for t-coordinate




INTRODUCTION

\
The study of dynamic behavior of liquids in greatly reduced :
gravitational fields has become a subject of intense interest in recent |
years as space technology has progressed. Knowledge of the frequency
of the oscillatory motion of fuel in a large rocket propellant tank can
help the designer to prevent its being in resonance with the motion of
the vehicle or of its control system, thus avoiding such undesirable
effects as dynamic instability. The behavior of the liquid-vapor inter-
face is important to the engine restart operation after a prolonged
coasting period, as the liquid and vapor tend to mix together when the
gravity force is almost absent. Other applications can be found in the

life support system, fuel cell system, etc., in a space vehicle.

The present study is concerned with the dynamic behavior of
the free surface, and the flow field in general, of liquid hydrogen in
the propellant tank of the S-IVB rocket stage during flight after the
main fuel supply has been cut off. A water hammer effect is created
by such a sudden cutoff operation and becomes the periodic source of
the tank. During this stage of flight the gravitational field has been
reduced to a magnitude of about 107° g and surface tension can no !
longer be neglected when considering the behavior of the free surface. i
For such a problem one is required to solve the full Navier-Stokes
equations in two dimensions with a moving boundary, the so-called
Stefan's problem. Aside from the additional complications arising
from the presence of a moving boundary, the analytical or numerical
solutions of Navier-Stokes equations present tremendous difficulties.
Most of the attempts in the past have failed in the obtaining of a numerical
solution to the full Navier-Stokes equations. Only in a few problems
with simple boundary conditions has limited success been achieved.
Therefore, in order to obtain a more practical solution in the present

problem, some simplifications must be made.




(2]

The first simplification is to assume that the viscous effects can
be neglected and that the flow is irrotational. The irrotationality con-
dition is used with the continuity equation to obtain Laplace's equation in
terms of the velocity potential. Satterlee and Reynold56 have found that
in the case of a circular cylindrical tank the inviscid analysis gives a
natural frequency of oscillation only a few percent lower than actual.

The assumption of potential flow is therefore useful and practical, and

there is no reason to believe that it cannot be applied to the two-dimensional

case.

Next, the concept of small perturbations is introduced, i.e., it is
assumed that the free surface can be expressed as the surm of the static
equilibrium surface and a small perturbation. This has the advantage of
simplifying the free surface conditions and fixing the mesh points on the
free surface when finite-difference techniques are employed. Also, {luid
properties, including the density and surface tension, are considered

constant.

Even with such simplifications, an analytical solution of the
present problem is not in sight and numerical solutions must be attempted.
The following chapter outlines the procedure for the solution of this prob-

lem by finite-difference methods.



NUMERICAL ANALYSIS

PROBLEM DESCRIPTIONS

The assumption of an incompressible, potential flow leads to the

following boundary value problem.

Governing Differential Equation

2 2
M +_a_.¢_). =0
ox? oy?

Boundary Conditions

On Solid Wall
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At the Source
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Dynamic Surface Condition
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Contact Angle Condition {(No Hysteresis)

(%2 x=0, W )

Initial Conditions

u(x,y, 0) = 0

v(x,v,0)= 0

$(x,y,0)=0
n(x,0) =0

The equations for the surface conditions are derived in Refer-

ence 2. The fluid is assumed to be in static equilibrium initially, and

the source velocity ug(t) is a periodic function.

FINITE-DIFFERENCE METHOD

The continuous derivatives
in the differential equations above
are replaced by discrete finite

differences as follows:
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For equal mesh sizes, the truncation errors in each of these
formulas would be O(hz) as h—-0, as compared to O(h) for different mesh

sizes. This shows the great advantage of using equally spaced nets.

A network of mesh points is laid over the flow field as shown in
Figure 1. Choice of mesh size a depends on considerations of truncation
errors, storage capacity, running time of the computer, and programming
ease. The mesh size must be chosen such that both the width of the tank
and the depth of the slot (h; - h;) are integral multiples of the mesh size.
Ordinarily this is impossible without making the mesh size intolerably
small; however, with slight adjustment of either or both of W and d, the
mesh size may be chosen with relative ease. The position of the slot
should also be adjusted, if necessary, to meet certain programming
requirements. For all practical purposes these adjustments can be made
without appreciably affecting the flow characteristics. The mesh size is
then the same throughout most of the flow field. Adjacent to the free
surface mesh points are selected at the intersections of the static equi-
librium surface and the vertical lines, therefore the mesh sizes are

different.
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At each of the regular interior mesh points the Laplace equation

is replaced by a finite-difference equation using the five point formula.

1
®i,,nt1 =7 @Piopjntr T4 onnty t Pty i, nt1 T 04 40, nea) (3)

For mesh points on the solid wall the Neumann boundary condition
0b/on = 0 can be satisfied by locating dummy points outside the wall at the

images of the points immediately inside the wall, so that

On the left wall,

1
¢, nt157 2z 5,041 T @ j-n,nt1t 1, j4g, ned) (4)

On the right wall,

1
¢I,j,n+1 =1 (2 ¢I—1,j,n+1 + ¢I,j-1, nt1 T ¢I,j+1, n+1) (5)

On the bottom of the tank,

1
¢i,1, nt1°= Z (2 ¢i,z, nt1 7 ¢’i-1,1, nt1 T ¢i+1, 1, n+1) (6)
At the two corners,

1

¢, Lnt1= 7% (¢1,z,n+1+¢2, 1, n+1) (7)
_1

4’1, L,nt1~ 3 (¢I- 1, 1, nt1 7 4’1, 2, n+1) (8)

At the source, since %% = ug(t),

1
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On the free surface,
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" s s )
where velocities on the surface uj, j,n and vj j,n can be obtained by a
procedure to be described later. (Actually they are velocities at points

with coordinates corresponding to the static equilibrium surface.) For

ovs ) .
3 ) ) a backward difference is used.
t i,j,n

S S
<6vs _Vi,j,n " Vi, j,n-1
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equations of Reference 3. They are
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L W 2 W cos W
where
Ho = H when x = W/2

By = pg W%/ T = Bond number.

fl

The sign for dH depends on the value of x. For x> W/2, -S—I—{' is
x

dx
positive; T is negative for x < W/2.
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Thus, ¢; j,nt1 €an be calculated by Equation 10. Using the first two

terms of a Taylor series expansion,

s
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where
Ay, =VYi, j=1" Vi, j-2

Ay, =vi,j- Vi, j-1

< .
(a;y ) can be calculated similarly.

CALCULATION OF FLOW FIELD

In a typical case there are at least several hundred mesh points
in the flow field and there are an equal number of equations to be solved
simultaneously at any time level. Since the resulting matrix is sparse,
the best way to solve these equations is by an iterative method. The
iterative scheme to be used is the successive over-relaxation method
or the extrapolated Liebmann method when applied to Laplace's equation,

which has the form

k+1 w k k+1 k k+1 k
¢i,j, nti = Z (¢i+l,j,n+l+ ¢i-l,j,n+1+ ¢i, j+l, n+l+¢i,j-l, n+1)' (0)‘1) ¢i’j: nt+1 -
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The relaxation factor, w, lies somewhere between 1 and 2. The
optimum value of w, which gives the highest convergence rate, is given

by Young's4 formula

X
[1+(1-02)

wb=l+

where \ is the spectral radius of the Gauss-Seidel method. For the case
of Laplace's equation and for a rectangle with sides Ra and Sa, where a

is the mesh size and R and S are integers. \ is given by
-1 (cos I v)z
A= 3 \cos ¢ + cos S .

Since the configuration under consideration is not rectangular
is suggested that one use either a rectangle which contains the given
region or one which has approximately the same area and proportions.
These formulas have been found to agree very well with the results of
test runs, referred to later, for which the liquid surface was assumed

to be flat.

The successive over-relaxation method has been proven to be
superior over the Gauss-Siedel method in terms of convergence rate.
This is so when applied to the five point formula, provided that the
ordering of the points is properly chosen. Experience shows that by
iterating column wise from left to right with arrows pointing upward

in each column, the highest convergence rate can be obtained.

It should be pointed out, however, that in obtaining mesh points
immediately below the free surface, it is usually undesirable to apply
the modified five-point formula since the mesh size ratios in such cases
may be so large that the iterations may converge very slowly and some-
times may even diverge. A different method is needed. The following

formula is the so-called "interpolation of degree one’':

11
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S
¢i, j+1, nt1

¢i,j,n+1.

fa
f + by
N ¢i,j-1,n+1 ¢i,j+1,n+1
i, j, nt1 = T (12)
a

¢i, j-1, nt+1]

The truncation errors in such interpolations are O(a*), compared
with O(a) in the modified five-point formula and O(a?‘) in the five-point
formula. This shows the advantage in using the interpolation formula.
Note also that Equation 12 is of positive type with diagonal dominance,

which is excellent for numerical solutions.

After the velocity potentials, ¢'s, have been calculated for
every mesh point on the new time level, the velocities will be computed.
The following procedure is to be followed:

%

ui,j,n+1 - <8x i,j, nt1

o= (%
Vl,J, nt1 <aY)i,_],n+l

To find (%E ik , it is necessary to test whether (Xi,j"‘a’ Yi,j)

or (xj,j - a, Yi,j) is a point outside the surface. If one of them is such a

point, the value of ¢ at the surface point intersected by the horizontal

line y = (j-1) a is obtained through linear interpolation of the two nearest

surface points. This new surface point is then used for the calculation

of <-@$ o . For example, as shown below, it is intended to find u..
ox i, j, nt1
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Point L, with coordinates (x¢c - a, y.), is located outside the surface.

Thus,

¢p = ¢’i+1,j, nt1

bc = <1>i,j, nt1! /,
N
. . P Y95, j+1, nt1
¢s _ Axy ¢i-1,j,n+1+(a‘AX1)¢i, jtLnt1 L W, |C E
W= ' ‘
a ) ”
i ’/’ Axll‘Ax2=a4
&S
271 7i-1, 3, n+
H
[}
Then
Ax A - A
. _ (%% - 1 DXz - ax
Ui, j, nt1 <ax)i j,nt1 Ax; (Ax;+ Ax;) 3o Ax) Ax; e
AXZ s
Ax;(Ax;+ Ax;) *w
Also,

A
i ag _ Y1 .
Ve . = = 3
1, ), ntl 3y i, j,nt1  Ayz(Ayit Avy,) @i, j+1, nta

Ay, - Ay, Ay, i
Ay Ay, i,j,nt1 Ay, (Ay;+ Ay,) 'hJ-Lnt!

For velocities on the free surface, apply a Taylor series

expansion to first degree

13
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CALCULATION PROCEDURES

Before proceeding to calculations for points on a new time level,
the time increment must be selected. The value of the increment depends
on the stability and convergence requirements, and is mostly determined
by experience. Surface conditions are then obtained by Equations 10 and
11, and values of ¢ in the flow field are approximated by extrapolations
through the corresponding points on the two previous time levels. Then
the iteration process starts. First, values of ¢ for points immediately
below the free surface are obtained by Equation 12, Next, mesh points
are revised column wise from left to right, with the direction in each
column pointing upward, according to Equations 3 through 9. These two
procedures are carried out alternatively until the maximum error in ¢
at any point drops below the previously set tolerance, usually around 107¢,
and iteration is terminated. Velocities are then computed, thus com-
pleting the calculations of the flow field on a new time level, A new time

increment is again selected, and the whole procedure is repeated.




CONCLUSIONS

Several test runs have been made to determine the validity of
Young's formula for predicting the value of the optimum relaxation factor.
Assuming a flat surface with constant ¢ across the width of the tank, the
flow field is laid with 44 X 38 mesh points. The best value for w was found
to be around 1.94 which agrees well with the value of 1. 92 given by Young's
formula. With the value of 1.94 for w, it took approximately 200 iterations
to converge to 10°% in ¢ for the first time increment and only a few iter-

ations for subsequent time levels with the same time increment.

Running time on the UNIVAC 1107 computer was less than 0.5 sec
per sweep, which is tolerable since on the average it does not require

many sweeps for convergence.

As was shown previously, an explicit finite-difference scheme
was employed to solve the differential equations for the free surface.
This could cause instability if time increments were not properly chosen.
With the presence of the mixed derivative and nonlinear terms, there is
no known theoretical method to obtain the stability criteria for such a
difference scheme. The stability criteria are to be determined only by
numerical experiments. Since central time differences were used, it is
concei.vable that the difference scheme may always be unstable no matter
how small the time increment is, as in the study performed by
Richardson8. If this should happen, either a forward time difference
or DuFort and Frankel difference scheme would have to be used. It is
unknown, however, what effects the mixed derivative and nonlinear terms

will have on these difference schemes.
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